Significance of Syntactic Information in TTS

Arulmozhi P, A G Ramakrishnan IISc, Bangalore.

About TTS

Conversion of sequence of symbols conveying linguistic information to acoustic wave form.

The accuracy of a TTS depends on the naturalness and intelligibility.

MILE TTS : <u>http://mile.ee.iisc.ernet.in:8080/tts_demo/</u>

Two major modules: NLP (Natural Language Processing) Module DSP (Digital Signal Processing) Module

NLP Module

- Takes care of the phonetic transcription of the text.
- Takes care of :
 - Text normalization
 - Normalization of non-standard words
 - mi.mI => milli meter
 - Number Expansion
 - Grapheme to Phoneme Conversion
 - Character-Phone mapping
 - அ a, க k
 - G2P Rules
 - Ka-ga conversion and similar.
 - Foreign Word lexicon

Why POS tagger

- POS tagger is made as a part of NLP module.
- The natural sentence read by a native speaker is intelligible because,
 - It has appropriate pronunciation
 - Right intonation
 - Right stress
 - Pauses at the right place
- The appropriate pronunciation is obtained by selecting the best unit in the phoneme context.
- The pauses at the right place has to be automatically identified by the usage of the type of word in the context.
- POS tagging is the first step to identify the right place to pause.
- Using POS tags, the phrases and clause boundary can be identified which is also useful in identifying pauses.

Continued..

- In general case, POS is needed for identifying the right pronunciation of certain words.
 - English : Project, Lead
- In Tamil, there is no such pronunciation differences.
- Intonation pattern and pitch contour can also be found out with syntactic information.
- Syntactic phrases must be contained in phonological phrases.
- Taking POS as a base, the phonological phrase can be found out

Nature of the Language : Tamil

- Dravidian Language
- Agglutinative
 - vantucenRAn
- Morphologically rich
 - varukiRAnE
 - vA+kiR+An+E
- Partially free word order
 - Aciriyar nanRAka paTitta mANavanukku paricae kotuttAr
 - nanRAka paTitta mANavanukku Aciriyar paricae kotuttAr
 - Aciriyar paricae nanRAka paTitta mANavanukku kotuttAr

Tuning of Tagset for TTS

A Tagset represents all the parts of speech in a language

Can vary according to the use

For English : Penn Tree bank, C5, C7, CLAWS

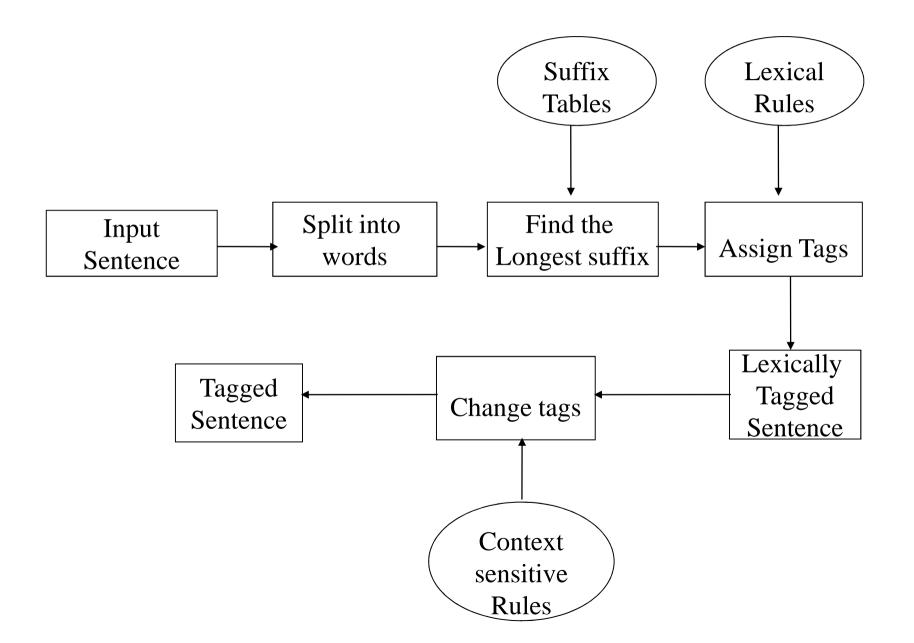
For Tamil : AU-KBC, CIIL, IIIT, Amrita, open source tagsets.

Tags for each word in a sentence is decided according to the tagset used.

- Two level of tags
 - Main tags : Identifies the main category of the word
 - Sub Tags : Identifies the category of inflections
- Monadic tags similar to English are not used
- For TTS purpose we do not need very detailed tags like other NLP activities. But only the main tags will not give sufficient information.

Main Tags

No	Representation	Name
1	NN	Noun
2	VB	Verb
3	PR	Pronoun
4	ADJ	Adjective
5	ADV	Adverb
6	AJP	Adjectival Participle
7	VBP	Verbal Participle
8	Q	Quantifier
9	QW	Question Word
10	CNJ	Conjunction
11	PP	Postposition
12	DET	Determiner
13	COMP	Complimentizer
14	EMPH	Empĥatic
15	SYM	Symbol


Sample Subtags

Acc	Accusative
Ins	Instrumental
Dat	Dative
Soc	Sociative
Loc	Locative
Gen	Genitive
Abl	Ablative
Voc	Vocative
Ben	Benefactory
Sel	Selective
Hrt	Hortative
Inc	Inclusive
Cond	Conditional
Cont	Continuous
Neg	Negative
	Ins Dat Soc Loc Gen Abl Voc Ben Sel Hrt Inc Cond Cont

Tagger for TTS

- This POS tagger is a rule based one.
- We do not use a root word dictionary.
- The tagger is based on a two stage architecture.
- The first stage has the lexical rules and the second stage has the context sensitive rules.
- The lexical rules act at the word level and the context sensitive rules act at the sentence level.

Architecture of POS Tagger

Lexical Rules

• Separate tables are created for programming purpose with the list of suffixes identified.

• Lexical Rule: Acts in the word level.

2*1+1*1, NN+pl.acc

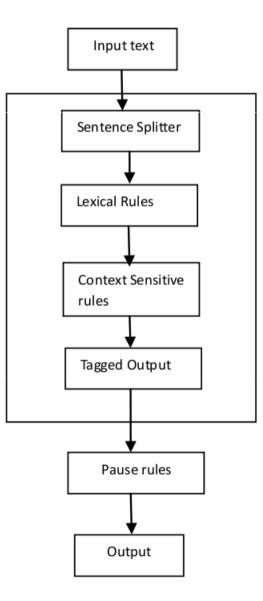
The suffixes indexed 2*1 (Suffix Table 2 Column 1 - kaL) and 1*1 (Suffix Table 1 Column 1 -ae) occur in a sequence, the word will be tagged as Noun+Plural+Accusative.

• There are 13 such tables which list 103 suffixes identified and put in.

Context Sensitive Rules

- Acts in the sentence level
- Example
 - 'If a sentence starts with a verb, change it to noun'
 - If the first word of a sentence is wrongly tagged as a verb in the first level, it will be corrected in the second level.

- Sentence Splitter:
 - Embedded in the POS tagger
 - Splits Paragraphs into sentences
 - Uses heuristic rules.


Pause Model

- Native speakers introduce pauses with the knowledge of the language acquired.
- TTS system, those pauses need to be inserted by the system at the right places.
- A wrong pause inserted between two words may make the synthesized speech unnatural.
 - The< np> book<np> is on<np> the<np> table.
 - The<np>book<np>is<np>onthe<np>table.
- Deterministic Rule based
- Uses list of words and POS tags for identifying pause

Continued...

- Six levels of pause have been identified, which determine the duration of the pause.
- <P0>, <P1>, <P2>, <P3>, <P4>, and <PW>.
- Order:
 - $\langle P0 \rangle$ No Pause
 - <P1> Lowest Pause
 - <PW> Common Pause between each word
 - <P2> Medium Pause (Pause after a comma)
 - <P3> Significant Pause (Pause after a Semicolon)
 - <P4> Highest Pause (Pause Between Sentences)
- Wherever <P0> ... <P4> is not identified, <PW> is assumed

Pause Model : System Architecture

Rules for Pause

1. There is no pause (or may be very minimal pause) between a number and the words such as 'mani', 'latcam', 'kOTi'. There is a list of words defined for this rule. Any NN (+PL) after a number does not have a pause.

Exception:

plus 1 – there should be no pause between the words.

<month name> <No> - there should be no pause between the words.

<No> <month name> - there should be a small pause between the words.

rUpaay 100 - there should be a small pause between the words.

Continued...

2. If the previous word has an accusative/dative marker, and the current word is a postposition, there is no pause between the current and the previous words.

Ex : avanai <P0> pola,

avanukku <P0> pin

3. If the previous word ends in a consonant (k, c, t, p) and the current word starts with the same letter, there is no pause between them.

Ex : akkaraec <P0> cImae

Continued...

4. If the previous word has the POS "ADV" and the current word has the POS "VB", then there is no pause in between them.

Ex : itu oru ankamaaka tikazkiRatu.

puttakangkaL inkee uLLana.

5. There should be a pause before quantifier. The POS tag for a quantifier will be Q.

Ex : (azhakiya kiraamamum)<P3>(oru periya ooraaTciyum)

All the numbers are considered as quantifiers.

Exception: 3 aayiram – there is no pause before aayiram.

6. There should be a pause before and after the following words. maRRum, allatu, aanaal, aakavee, enavee

Sample Output

சி.பி.எஸ்.இ. முறையில் மாணவாகளுக்கு படிக்கும் அடுத்த students+pl+dat C.B.S.E stream+loc studying next NN+loc VB+fut+3sn NN+pl+dat AJP NN <P0> <PW> < PW >< PW ><P0> கல்வி ஆண்டு முதல் 10ம் வகுப்பு தேர்வு கிடையாது education year from 10th class exam No NN NN PP Q NN NN VB+pst+3sn+neg <P0> <P0> <P2> <P0> <P0> <PW> <P4>

சுவற்றின் மேல் சித்திரங்கள் உள்ளன.

After Pause Rules...

- The DSP module will produce speech wave form with appropriate pauses as given by the NLP module.
- There are 15 rules for pause.
- Various levels of pause are also identified.
- There are more rules for <P0>
- Changing all <PW> to <P0> reduces the number of rules.

Conclusion

- Evaluation done based on Mean Opinion Score (MOS)
- The synthesized speech with and without pause model are compared.
- Pause model which uses a POS tagger is found to improve the naturalness of the synthesized speech.
- Problems occur when wrong tags are identified with the POS tagger.
 - Ex : Aru river or six?
 - Aru six has a pause before and river does not have a pause before.
 - Ex: pawAni ARu kAvEriyin kiLai Akum
 - pawAni Aru mAttiraikaL cAppiTTAL.
- More rules are to be identified to insert pauses.

Thankyou